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Departamento de Matématica e Informática,
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Abstract

Asymptotic expansions are given for large values of n of the gener-
alized Bernoulli polynomials Bµ

n
(z) and Euler polynomials Eµ

n
(z). In

a previous paper López and Temme (1999) these polynomials have
been considered for large values of µ, with n fixed. In the literature
no complete description of the large n asymptotics of the considered
polynomials is available. We give the general expansions, summarize
known results of special cases and give more details about these re-
sults. We use two-point Taylor expansions for obtaining new type of
expansions. The analysis is based on contour integrals that follow from
the generating functions of the polynomials.

2000 Mathematics Subject Classification: 11B68, 30E10, 33E20, 41A60.
Keywords & Phrases: asymptotic expansions, generalized Bernoulli polynomials,
generalized Euler polynomials.

1 Introduction

Generalized Bernoulli and Euler polynomials of degree n, complex order µ
and complex argument z, denoted respectively by Bµ

n(z) and Eµ
n(z), can be
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defined by their generating functions. We have [5, 10]

wµewz

(ew − 1)µ
=

∞∑

n=0

Bµ
n(z)

n!
wn, |w| < 2π, (1.1)

and
2µewz

(ew + 1)µ
=

∞∑

n=0

Eµ
n(z)

n!
wn, |w| < π. (1.2)

These polynomials play an important role in the calculus of finite dif-
ferences. In fact, the coefficients in all the usual central-difference formulae
for interpolation, numerical differentiation and integration, and differences
in terms of derivatives can be expressed in terms of these polynomials (see
[5, 7]).

An explicit formula for the generalized Bernoulli polynomials can be
found in [9]. Properties and explicit formulas for the generalized Bernoulli
and Euler numbers can be found in [4, 11, 12] and in cited references.

In a previous paper [1] we have considered these polynomials for large
values of µ, with n fixed, and in the present paper we consider n as the large
parameter, with the other parameters fixed. We summarize known results
from the literature for integer values of µ, and give more details about these
results. We describe the method for obtaining the coefficients in the expan-
sion for general µ. Finally, we use two-point Taylor expansions for obtaining
new type of expansions for general µ. The analysis is based on contour in-
tegrals that follow from the generating functions of the polynomials.

2 The generalized Bernoulli polynomials

Three different cases arise, depending on µ = 0,−1,−2, . . ., µ = 1, 2, 3, . . . ,
and µ otherwise, real or complex. Our approach is based on the Cauchy
integral

Bµ
n(z) =

n!

2πi

∫

C

wµewz

(ew − 1)µ
dw

wn+1
, (2.1)

where C is a circle around the origin, with radius less than 2π. This follows
from (1.1).

2.1 Asymptotic form when µ = 0, −1, −2, . . .

In this case the generating series in (1.1) converges for all finite values of
z, and, hence, the polynomials Bµ

n(z) have a completely different behavior
compared with the general case.
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We first follow the approach given in [14], and observe that when µ is
a negative integer or zero, say µ = −m (m = 0, 1, 2, . . .), we can express
Bµ

n(z) in terms of a finite sum. We expand by the binomial theorem

(ew − 1)m =

m∑

r=0

(−1)m−r

(
m

r

)
erw. (2.2)

This gives

B−m
n (z) =

n!

(n + m)!

m∑

r=0

(−1)m−r

(
m

r

)
(z + r)n+m. (2.3)

For any given m ∈ N and complex z only the term or terms with the largest
values of |z + r| will give a large contribution to the sum in (2.3), the other
terms being exponentially small in comparison. We conclude, that (2.3)
gives the asymptotic form when n → ∞, when µ = −m and z are fixed.

In particular, when z > 0, the term with index r = m is maximal, and
we have

B−m
n (z) =

n!

(n + m)!
(z + m)n+m

[
1 + O

(
z + m − 1

z + m

)n+m
]

. (2.4)

The error term can also be estimated by O(exp(−(n + m)/(z + m))), which
is indeed exponentially small compared with unity.

For general complex z = x + iy and x > −m/2 the term with index
r = m again is maximal and the same estimate as in (2.4) is valid. When
x = −m/2 the terms with r = 0 and r = m give the maximal contributions,
and we have

B−m
n (z) ∼

n!

(n + m)!

[
(−1)m(−1

2
m + iy)n+m + (1

2
m + iy)n+m

]
. (2.5)

When x < −m/2 the term with index r = 0 is maximal, and we have

B−m
n (z) = (−1)m

n!

(n + m)!
zn+m

[
1 + O

(
z + 1

z

)n+m
]

. (2.6)

By using the saddle point method we can obtain an estimate similar as
the one in (2.4). We write

B−m
n (z) =

n!

2πi

∫

C

(
1 − e−w

)m
eφ(w) dw

w
, (2.7)
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where φ(w) = (z + m)w − (n + m) ln w. This function has a saddle point
at w0 = (n + m)/(z + m), and when ℜw0 is large and positive we replace
(1 − e−w) by its value at this point. Then we have

B−m
n (z) ∼

(
1 − e−w0

)m n!

2πi

∫

C

e(z+m)w dw

wn+m+1

=
(
1 − e−w0

)m n!

(n + m)!
(z + m)n+m,

(2.8)

in which e−w0 is exponentially small. When ℜw0 is not positive we can
modify this method to obtain the estimates as given in (2.5) and (2.6). Also,
we can make further steps in the saddle point analysis, and show that the
next terms in the expansion are exponentially small compared with unity,
similar as shown in (2.4). However, the representation in (2.3) describes
very elegantly the asymptotic behavior.

2.2 Asymptotic form when µ = 1, 2, 3, . . .

We write µ = m. The starting point is the expansion for m = 1:

B1
n(z) = Bn(z) = −n!

∞∑

k=−∞
k 6=0

e2πikz

(2πik)n
, (2.9)

which for z ∈ (0, 1) can be viewed as a Fourier expansion of B1
n(z). This

expansion follows from taking the radius of the circle C in (2.1) equal to
(2K + 1)π, (K an integer). Taking K large, we take into account the poles
of the integrand at w = 2πik (k = ±1,±2, . . .), and calculate the residues
of these poles. The integral around the circle C tends to zero as K → ∞,
provided n > 1 and 0 ≤ z ≤ 1.

This gives the expansions (n = 1, 2, 3, . . . ; 0 ≤ z ≤ 1)

B2n(z) = 2(−1)n+1(2n)!

∞∑

k=1

cos(2πkz)

(2πk)2n
, (2.10)

and

B2n+1(z) = 2(−1)n+1(2n + 1)!
∞∑

k=1

sin(2πkz)

(2πk)2n+1
. (2.11)

In (2.11) we can take n = 0, provided 0 < z < 1. This gives the well-known
Fourier expansion of B1(z) = z − 1/2, 0 < z < 1.
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In (2.9) only the terms with k = ±1 are relevant for the asymptotic
behavior, and we obtain for fixed complex z

B1
n(z) =

2(−1)n+1n!

(2π)n

[
cos

(
2πz + 1

2
πn

)
+ O

(
2−n

)]
, n → ∞. (2.12)

For general fixed real or complex z the series in (2.10) and (2.11) can be
viewed as asymptotic expansion for large n, as easily follows from the ratio
test.

For general µ = m = 1, 2, 3, . . . a similar expansion as in (2.9) can be
given. In that case the poles of the integrand in (2.1) are of higher order.
We can write

Bm
n (z) = −n!

∞∑

k=−∞
k 6=0

βm
k (n, z)

e2πikz

(2πik)n
, (2.13)

where β1
k(n, z) = 1,∀k. This is a Fourier expansion for z ∈ (0, 1) when

m < n. For other values of z it can be used as an asymptotic expansion for
large n.

An explicit form of βm
k (n, z) follows from calculating the residues of the

poles at 2πik of order m of the integrand in (2.1). For this we compute the
coefficient cm−1 in the expansion

(w − 2πik)mwmezw

(ew − 1)mwn+1
=

∞∑

r=0

cr(w − 2πik)r , (2.14)

from which we obtain

βm
k (n, z)

e2πikz

(2πik)n
= cm−1. (2.15)

We substitute w = s + 2πik and write the expansion as

e2πikz smezs

(es − 1)m(s + 2πik)n+1−m
=

∞∑

r=0

crs
r. (2.16)

We use (1.1) and write the left-hand side in the form

e2πikz

(2πik)n+1−m

∞∑

ν=0

Bm
ν (z)

n!
sν

∞∑

ν=0

(
m − n − 1

ν

)
sν

(2πik)ν
. (2.17)

Hence, cr of (2.16) can be written as

cr =
e2πikz

(2πik)n+1−m

r∑

ν=0

Bm
ν (z)

ν!

(
m − n − 1

r − ν

)
(2πik)ν−r, (2.18)
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and we conclude that

cm−1 =
e2πikz

(2πik)n

m−1∑

ν=0

Bm
ν (z)

ν!

(
m − n − 1

m − 1 − ν

)
(2πik)ν . (2.19)

It follows from (2.15) that

βm
k (n, z) =

m−1∑

ν=0

Bm
ν (z)

ν!

(
m − n − 1

m − 1 − ν

)
(2πik)ν . (2.20)

To avoid binomials with negative integers, and to extract the main asymp-
totic factor, we write

βm
k (n, z) = (−1)m−1

(
n − 1

m − 1

) m−1∑

ν=0

Bm
ν (z)

(
m − 1

ν

)
(n − ν − 1)!

(n − 1)!
(−2πik)ν .

(2.21)
For large n the main term occurs for ν = 0. We have

βm
k (n, z) =

(−1)m−1nm−1

(m − 1)!

[
1 + O(n−1)

]
. (2.22)

Observing that, as in (2.9), only the terms with k = ±1 are relevant for
the asymptotic behavior, we obtain

Bm
n (z) =

(−1)n+1n!

(2π)n

[
βm

1 (n, z)e2πiz+ 1

2
πin + βm

−1(n, z)e−2πiz− 1

2
πin + . . .

]
,

(2.23)
and by using (2.21) we obtain for fixed m and complex z (cf. (2.12))

Bm
n (z) =

2(−1)m+n

(2π)n

(
n − 1

m − 1

)
×

[
m−1∑

ν=0

Bm
ν (z)

(
m − 1

ν

)
(n − ν − 1)!

(n − 1)!
(2π)ν cos σ + O

(
2−n

)
]

,
(2.24)

as n → ∞, where σ = (2z + 1
2n − 1

2ν)π.

To obtain βm
k (n, z) for m > 1 we can also use a recurrence relation. We

have the relation

µBµ+1
n (z) = (µ − n)Bµ

n(z) + n(z − µ)Bµ
n−1(z), n ≥ 1, (2.25)

which follows from (1.1) by differentiating both members with respect to w.
By differentiation with respect to z we find

nBµ
n−1(z) =

d

dz
Bµ

n(z), (2.26)
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Figure 1: Contour for (2.1) for general µ

π 2π−2π −π 3π

3πi

−3π

2πi

πi

−3πi

−2πi

−πi

L+

L
-

giving

µBµ+1
n (z) = (µ − n)Bµ

n(z) + (z − µ)
d

dz
Bµ

n(z), n ≥ 0. (2.27)

This gives the recurrence relation for m = 1, 2, 3, . . .

mβm+1
k (n, z) = [m−n+2πik(z−m)]βm

k (n, z)+(z−m)
d

dz
βm

k (n, z). (2.28)

2.3 Asymptotic form for general complex µ

We consider (2.1) and observe that the singularities at ±2πi are the sources
for the main asymptotic contributions. We integrate around a circle with
radius 3π, avoiding branch cuts running from ±2πi to +∞. See Figure 1.
The contribution from the circular arc is O((3π)−n), which is exponentially
small with respect to the main contributions.

We denote the loops by L± and the contributions from the loops by I±.
For the upper loop we substitute w = 2πies. This gives

I+ =
n!

2πi

e2πiz

(2πi)n

∫

C+

g(s)s−µe−ns ds, (2.29)
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where

g(s) =

(
2πis

eu − 1

)µ

ezu+µs, u = 2πi (es − 1) , (2.30)

and C+ is the image of L+. C+ is a contour that encircles the origin in the
clockwise fashion.

To obtain an asymptotic expansion we apply Watson’s lemma for loop
integrals, see [8, p. 120]. We expand

g(s) =

∞∑

k=0

gks
k, (2.31)

substitute this in (2.29), and interchange summation and integration. This
gives

I+ ∼ n!
e2πiz

(2πi)n

∞∑

k=0

gkFk, (2.32)

where

Fk =
1

2πi

∫

C+

sk−µe−ns ds, (2.33)

with C+ extended to +∞. That is, we start the integration along the contour
C+ at s = +∞, with ph s = 2π, turn around the origin in the clock-wise
direction, and return to +∞ with ph s = 0.

To evaluate the integrals we turn the path by writing s = eπit, and use
the representation of the reciprocal gamma function in terms of the Hankel
contour; see [10, p. 48]. The result is

Fk = nµ−k−1eπiµ (−1)k

Γ(µ − k)
= nµ−k−1eπiµ (1 − µ)k

Γ(µ)
, (2.34)

where (a)n is the shifted factorial, or Pochhammer’s symbol, defined by

(a)n = a · (a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
, n = 0, 1, 2, . . . . (2.35)

This gives the expansion

I+ ∼
n!nµ−1

(2π)n Γ(µ)
eiχ

∞∑

k=0

(1 − µ)kgk

nk
, (2.36)

where
χ = 2ζ − 1

2
nπ, ζ = (z + 1

2
µ)π. (2.37)
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The contribution I− can be obtained in a similar way. However, it is
the complex conjugate of I+ (not considering z and µ as complex numbers).
The result I+ + I− can be obtained by taking twice the real part of I+. We

write gk = g
(r)
k + ig

(i)
k (with g

(r)
k , g

(i)
k real when z and µ are real), and obtain

Bµ
n(z) ∼

2n!nµ−1

(2π)n Γ(µ)

[
cos χ

∞∑

k=0

(1 − µ)kg
(r)
k

nk
− sinχ

∞∑

k=0

(1 − µ)kg
(i)
k

nk

]
,

(2.38)
as n → ∞, with z and µ fixed complex numbers (µ /∈ Z).

The first few coefficients g
(r)
k , g

(i)
k are

g
(r)
0 = 1, g

(i)
0 = 0,

g
(r)
1 = 1

2µ, g
(i)
1 = 2ζ,

g
(r)
2 = 1

24 (3µ2 + (4π2 − 1)µ − 48ζ2), g
(i)
2 = (1 + µ)ζ,

g
(r)
3 = 1

48 (µ3 + (4π2 − 1)µ2 + 8(π2 − 6ζ2)µ − 96ζ2),

g
(i)
3 = 1

12ζ(3µ2 + (4π2 + 5)µ − 16ζ2 + 4).

(2.39)

The first-order approximation reads

Bµ
n(z) =

2n!nµ−1

(2π)n Γ(µ)

[
cos π(2z + µ − 1

2
n) + O(1/n)

]
, n → ∞. (2.40)

Nörlund [6, p. 39] describes the same method of this section and only gives
the first-order approximation.

2.3.1 An alternative expansion

As observed in the previous method, the main contributions to (2.1) comes
from the singular points of the integrand at ±2πi. In this section we expand
part of the integrand of (2.1) in a two-point Taylor expansion. In this way
a simpler asymptotic representation can be obtained. For more details on
this topic we refer to [2, 3] and for the evaluation of coefficients of such
expansions to [13]. We write

f(w) = 2−3µπ−2µ
(
w2 + 4π2

)µ
(

w

ew − 1

)µ

ewz (2.41)
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and expand

f(w) =
∞∑

k=0

(αk + wβk)
(
w2 + 4π2

)k
. (2.42)

The function f(w) is analytic inside the disk |w| < 4π and the series con-
verges in the same domain. The coefficients α0 and β0 can be found by
substituting w = ±2πi. This gives

α0 =
f(2πi) + f(−2πi)

2
= cos 2ζ,

β0 =
f(2πi) − f(−2πi)

4πi
=

1

2π
sin 2ζ,

(2.43)

where ζ is defined in (2.37).
The next coefficients can be obtained by writing f0(w) = f(w) and

fj+1(w) =
fj(w) − (αj + wβj)

w2 + 4π2

=

∞∑

k=j+1

(αk + wβk)
(
w2 + 4π2

)k−j−1
,

(2.44)

j = 0, 1, 2, . . ., and by taking the limits when w → ±2πi. We have

αj+1 =
f ′

j(2πi) − f ′
j(−2πi)

8πi
,

βj+1 = −
f ′

j(2πi) + f ′
j(−2πi) − 2βj

16π2
.

(2.45)

This gives

α1 = −
1

16π2
[3µ cos 2ζ + 2πη sin 2ζ],

β1 =
1

32π3
[2πη cos 2ζ + (2 − 3µ) sin 2ζ],

α2 =
1

1536π4
[(−12π2η2 + 4µπ2 − 33µ + 27µ2) cos 2ζ + 12πη(3µ − 1) sin 2ζ],

β2 =
1

3072π5
[−36πη(µ − 1) cos 2ζ + (36 − 69µ + 27µ2 + 4µπ2 − 12π2η2) sin 2ζ],

(2.46)

where η = µ − 2z.
Substituting the expansion in (2.42) into (2.1) we obtain

Bµ
n(z) = n! 23µπ2µ

∞∑

k=0

[
αkΦ

(n)
k + βkΦ

(n−1)
k

]
, (2.47)
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where

Φ
(n)
k =

1

2πi

∫

C

(
w2 + 4π2

)k−µ dw

wn+1
. (2.48)

We have Φ
(2n+1)
k = 0 and

Φ
(2n)
k = (2π)2k−2µ−2n

(
k − µ

n

)
= (−1)n(2π)2k−2µ−2n (µ − k)n

n!
. (2.49)

Hence,

Bµ
2n(z) = (2n)! 23µπ2µ

∞∑

k=0

αkΦ
(2n)
k ,

Bµ
2n+1(z) = (2n + 1)!23µπ2µ

∞∑

k=0

βkΦ
(2n)
k .

(2.50)

These convergent expansions have an asymptotic character for large n. This
follows from (see (2.35))

Φ
(2n)
k+1

Φ
(2n)
k

= 4π2 (µ − k − 1)n
(µ − k)n

= 4π2 Γ(µ − k − 1 + n)

Γ(µ − k − 1)

Γ(µ − k)

Γ(µ − k + n)

= 4π2 µ − k − 1

µ − k + n − 1
= O

(
n−1

)
, n → ∞.

(2.51)

We compare the first term approximations given in (2.40) and those from
(2.50). From (2.40) we obtain

Bµ
2n(z) ∼ (−1)n

(2n)! 2µnµ−1

(2π)2n Γ(µ)
cos π(2z + µ) + . . . , (2.52)

and from (2.50)

Bµ
2n(z) = (−1)n

(2n)! 2µ

(2π)2n Γ(µ)

Γ(n + µ)

n!
cos π(2z + µ) + . . . . (2.53)

Because Γ(n+µ)/n! ∼ nµ−1 as n → ∞, we see that the first approximations
give the same asymptotic estimates, and they are exactly the same when
µ = 1.
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Integer values of µ Comparing the expansions in (2.38) and (2.50), we
observe that those in (2.50) do not vanish when µ = 0,−1,−2, . . ., whereas
the expansion in (2.38) does. We have when µ = m (integer)

Φ
(2n)
k =





(2π)2k−2m−2n

(
k − m

n

)
, k ≥ n + m,

0, k < n + m.

(2.54)

Hence, the summation in (2.50) starts with k = n + m. The scale {Φ2n
k }

loses its asymptotic property, because now

Φ
(2n)
k+1

Φ
(2n)
k

= 4π2 n + ℓ + 1

ℓ + 1
= O (n) , n → ∞, (2.55)

where k = n + m + ℓ, and a possible asymptotic character of the series
in (2.50) has to be furnished by the coefficients αk, βk, which depend on n
when k ≥ n + m

Because n is assumed to be large, and the coefficients αk, βk in (2.50)
become quite complicated when k ≥ n + m, these expansions are of no use
when µ is an integer.

When we replace the expansion in (2.42) with

f(w) =

∞∑

k=0

(
α̃k + wβ̃k

)(
w2 + 4π2

w2

)k

(2.56)

we obtain

Bµ
2n(z) ∼ (2n)! 23µπ2µ

∞∑

k=0

α̃kΦ̃
(2n)
k ,

Bµ
2n+1(z) ∼ (2n + 1)!23µπ2µ

∞∑

k=0

β̃kΦ̃
(2n)
k ,

(2.57)

where α̃k and β̃k can be obtained from a similar scheme as in (2.44)-(2.45).

The functions Φ
(2n)
k are given by

Φ̃
(2n)
k =

(−1)n+k

(2π)2µ+2n

(µ − k)n+k

(n + k)!
=

(−1)n+k

(2π)2µ+2n

Γ(µ + n)

Γ(µ − k) (n + k)!
. (2.58)

When µ = m (integer) these functions vanish if k−m = 0, 1, 2, . . ., which is
more useful that in the earlier choice (2.42). When m < 0 all terms vanish,
when m > 0 the series have a finite number of terms.

12



With the expansion in (2.56), which converges in certain neighborhoods
of the points w = ±2πi (and not in a domain that contains any allowed
deformation of the curve C in (2.1)), the expansions in (2.57) do not converge,
but they have an asymptotic character for large n.

As an example, when m = 1 the expansions in (2.57) have just one term

(k = 0). In this case Φ̃
(2n)
0 = (−1)n/(2π)2n+2 and α̃0 = α0, β̃0 = β0 (see

(2.43)). These approximations correspond exactly to the first terms in the
expansions in (2.10) and (2.11).

3 The generalized Euler polynomials

We can use the same methods as for the Bernoulli polynomials, and, there-
fore, we give less details. Again, three different cases arise, depending on
µ = 0,−1,−2, . . ., µ = 1, 2, 3, . . . , and µ otherwise, real or complex. In the
first and third case we use the Cauchy integral

Eµ
n(z) =

n!

2πi

∫

C

2µewz

(ew + 1)µ
dw

wn+1
, (3.1)

where C is a circle around the origin, with radius less than π. This follows
from (1.2).

3.1 Asymptotic form when µ = 0, −1, −2, . . .

We proceed as in §2.1 and write µ = −m (m = 0, 1, 2, . . .). We expand
Eµ

n(z) in terms of a finite sum. We have

E−m
n (z) = 2−m

m∑

r=0

(
m

r

)
(z + r)n. (3.2)

For any given m ∈ N and complex z only the term or terms with the largest
values of |z + r| will give a large contribution to the sum in (3.2), the other
terms being exponentially small in comparison. We conclude, that (3.2) gives
the asymptotic form when n → ∞, when m and z are fixed. In particular,
when z > 0, the term with index r = m is maximal, and we have

E−m
n (z) = 2−m(z + m)n

[
1 + O

(
z + m − 1

z + m

)n]
. (3.3)

The error term can also be estimated by O(exp(−n/(z + m))), which is
indeed exponentially small compared with unity.
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For general complex z = x + iy and x > −m/2 the term with index
r = m again is maximal and the same estimate as in (3.3) is valid. When
x = −m/2 the terms with r = 0 and r = m give the maximal contributions,
and we have

E−m
n (z) ∼ 2−m

[
(−1

2
m + iy)n + (1

2
m + iy)n

]
. (3.4)

When x < −m/2 the term with index r = 0 is maximal, and we have

E−m
n (z) = 2−mzn

[
1 + O

(
z + 1

z

)n]
. (3.5)

As explained at the end of §2.1 these estimates can also be derived by
using the saddle point method.

3.2 Asymptotic form when µ = 1, 2, 3, . . .

We write µ = m. For m = 1 we have

E1
n(z) = En(z) = 2n!

∞∑

k=−∞

e(2k+1)πiz

((2k + 1)πi)n+1

= 4n!

∞∑

k=0

sin((2k + 1)πz − 1
2πn)

((2k + 1)π)n+1
,

(3.6)

where z ∈ (0, 1) if n = 0 and z ∈ [0, 1] if n > 0. This expansion follows from
(3.1) as in §2.2.

In the second series in (3.6) only the term with k = 0 is relevant for the
asymptotic behavior, and we obtain for fixed complex z

E1
n(z) =

4n!

πn+1

[
sin

(
πz − 1

2
πn

)
+ O

(
3−n

)]
, n → ∞. (3.7)

For general fixed real or complex z the series in (3.6) can be viewed as
asymptotic expansion for large n, as easily follows from the ratio test.

For general µ = m = 1, 2, 3, . . . a similar expansion as in (3.6) can be
given. In that case the poles of the integrand in (3.1) are of higher order.
We can write

Em
n (z) = 2n!

∞∑

k=0

ǫm
k (n, z)

e(2k+1)πiz

((2k + 1)πi)n+1
, (3.8)

where ǫ1
k(n, z) = 1,∀k.

14



To obtain ǫm
k (n, z) for m > 1 we compute the residues of the poles at

(2k + 1)πi of order m of the integrand in (3.1). For this we compute the
coefficient dm−1 in the expansion

(w − (2k + 1)πi)mezw

(ew + 1)mwn+1
=

∞∑

r=0

dr(w − (2k + 1)πi)r . (3.9)

We substitute w = s + (2k + 1)πi and write the expansion as

(−1)mez(2k+1)πi smezs

(es − 1)m(s + (2k + 1)πi)n+1
=

∞∑

r=0

drs
r. (3.10)

We use (1.1) and conclude that

dm−1 =
(−1)mez(2k+1)πi

((2k + 1)πi)n+1

m−1∑

ν=0

Bm
ν (z)

ν!

(
−n − 1

m − 1 − ν

)
((2k + 1)πi)ν+1−m.

(3.11)
It follows that

ǫm
k (n, z) = (−1)m−12m−1

m−1∑

ν=0

Bm
ν (z)

ν!

(
−n − 1

m − 1 − ν

)
((2k + 1)πi)ν+1−m,

(3.12)
which we write in the form

ǫm
k (n, z) =

2m−1

((2k + 1)πi)m−1

(
n + m − 1

m − 1

)
×

m−1∑

ν=0

Bm
ν (z)

(
m − 1

ν

)
(n + m − ν − 1)!

(n + m − 1)!
(−(2k + 1)πi)ν .

(3.13)

For large n the main term occurs for ν = 0, giving

ǫm
k (n, z) =

2m−1nm−1

(m − 1)! ((2k + 1)πi)m−1

[
1 + O

(
n−1

)]
, (3.14)

and in (3.8) the terms with k = 0,−1 give the main terms, and we obtain
for fixed m and complex z (cf. (3.7))

Em
n (z) =

2m+1n!

πn+m

(
n + m − 1

m − 1

)
×

[
m−1∑

ν=0

Bm
ν (z)

(
m − 1

ν

)
(n + m − ν − 1)!

(n + m − 1)!
πν sin τ + O

(
3−n

)
]

,
(3.15)

as n → ∞, where τ = (z − 1
2n − 1

2(m − 1) − 1
2ν)π.
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3.3 Asymptotic form for general complex µ

The analysis is as in §2.3. We use a contour for the integral (3.1) as in
Figure 1, now with loops around the branch points ±πi, and with radius of
the large circle smaller than 3π. We denote the integrals around the loops
by I±. After the substitution w = πi exp(s) we obtain for the upper loop

I+ =
2µn!

2πi

eπiz−µπi

(πi)n+µ

∫

C+

h(s)s−µe−ns ds, (3.16)

where

h(s) = ezu

(
πis

eu − 1

)µ

, u = πi (es − 1) . (3.17)

We expand h(s) =
∑

∞

k=0 hks
k and interchange summation and integration

in (3.16). By using (2.33) and (2.34) we obtain the result

Eµ
n(z) ∼

2µ+1 n!nµ−1

πn+µ Γ(µ)

[
cos χ

∞∑

k=0

(1 − µ)kh
(r)
k

nk
− sin χ

∞∑

k=0

(1 − µ)kh
(i)
k

nk

]
,

(3.18)
as n → ∞, with z and µ fixed complex numbers (µ /∈ Z), where

χ = ζ − 1
2
nπ, ζ = (z − 1

2
µ)π. (3.19)

The first few coefficients h
(r)
k , h

(i)
k are

h
(r)
0 = 1, h

(i)
0 = 0,

h
(r)
1 = −1

2µ, h
(i)
1 = ζ,

h
(r)
2 = 1

24(3(1 − 2π2)µ2 + (13π2 − 12ζπ − 1)µ − 12ζ2), h
(i)
2 = 1

2(1 − µ)ζ,

h
(r)
3 = 1

48z(−µ3 + (1 − π2)µ2 + 2(π2 + 6ζ2)µ − 24ζ2),

h
(i)
3 = 1

24ζ(3µ2 + (π2 − 7)µ − 4ζ2 + 4).

(3.20)

The first-order approximation reads

Eµ
n(z) =

2µ+1 n!nµ−1

πn+µ Γ(µ)

[
cos π(z − 1

2
µ − 1

2
n) + O(1/n)

]
, n → ∞. (3.21)
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3.3.1 An alternative expansion

We repeat the steps of §2.3.1. We write

g(w) =

(
w2 + π2

2π

)µ (
1

ew + 1

)µ

ewz (3.22)

and expand

g(w) =
∞∑

k=0

(γk + wδk)
(
w2 + π2

)k
. (3.23)

We have

γ0 =
g(πi) + g(−πi)

2
= cos ζ,

δ0 =
g(πi) − g(−πi)

2πi
=

1

π
sin ζ.

(3.24)

where ζ = (z − 1
2µ)π.

The next coefficients follow from writing g0(w) = g(w) and

gj+1(w) =
gj(w) − (γj + wδj)

w2 + π2

=

∞∑

k=j+1

(γk + wδk)
(
w2 + π2

)k−j−1
, j = 0, 1, 2, . . . .

(3.25)

This gives

γj+1 =
g′j(πi) − g′j(−πi)

4πi
,

δj+1 = −
g′j(πi) + g′j(−πi) − 2δj

4π2
.

(3.26)

and

γ1 = −
1

4π2
[µ cos ζ + πη sin ζ],

δ1 =
1

4π3
[πη cos ζ + (2 − µ) sin ζ],

γ2 =
1

96π4
[(−9µ − 3π2η2 + π2µ + 3µ2) cos ζ + 6πη(µ − 1) sin ζ],

δ2 =
1

96π5
[6πη(3 − µ) cos ζ + (36 − 21µ + 3µ2 + π2µ − 3π2η2) sin ζ],

(3.27)

where η = µ − 2z.
Substituting the expansion in (3.23) into (3.1) we obtain

Eµ
n(z) = (4π)µn!

∞∑

k=0

[
γkΨ

(n)
k + δkΨ

(n−1)
k

]
, (3.28)
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where

Ψ
(n)
k =

1

2πi

∫

C

(
w2 + π2

)k−µ dw

wn+1
. (3.29)

We have Ψ
(2n+1)
k = 0 and

Ψ
(2n)
k = π2k−2µ−2n

(
k − µ

n

)
= (−1)nπ2k−2µ−2n (µ − k)n

n!
. (3.30)

Hence,

Eµ
2n(z) = (2π)µ(2n)!

∞∑

k=0

γkΨ
(2n)
k ,

Eµ
2n+1(z) = (2π)µ(2n + 1)!

∞∑

k=0

δkΨ
(2n)
k .

(3.31)

These convergent expansions have an asymptotic character for large n. This
follows from

Ψ
(2n)
k+1

Ψ
(2n)
k

= π2 µ − k

µ − k − 1 + n
= O

(
n−1

)
, n → ∞. (3.32)

Comparing the first term approximations given in (3.21) and those from
(3.31) we obtain from (3.21)

Eµ
2n(z) ∼ (−1)n

(2n)! 22µnµ−1

π2n+µ Γ(µ)
cos π(z − 1

2
µ) + . . . , (3.33)

and from (3.31)

Eµ
2n(z) = (−1)n

(2n)! 22µ

π2n+µ Γ(µ)

Γ(n + µ)

n!
cos π(z − 1

2
µ) + . . . . (3.34)

and we see that the first approximations give the same asymptotic estimates.

Integer values of µ The expansions in (3.31) do not vanish when µ is
a negative integer, as the expansion in (3.18) does. We have when µ = m
(integer)

Ψ
(2n)
k =





π2k−2m−2n

(
k − m

n

)
, k ≥ n + m,

0, k < n + m.

(3.35)

Hence, the summation in (3.31) starts with k = n + m.
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When we expand

g(w) =
∞∑

k=0

(
γ̃k + wδ̃k

)(
w2 + π2

w2

)k

(3.36)

we obtain the expansions

Eµ
2n(z) ∼ (2π)µ(2n)!

∞∑

k=0

γ̃kΨ̃
(2n)
k ,

Eµ
2n+1(z) ∼ (2π)µ(2n + 1)!

∞∑

k=0

δ̃kΨ̃
(2n)
k ,

(3.37)

where γ̃k and δ̃k can be obtained from a similar scheme as in (3.26). The

functions Ψ̃
(2n)
k are given by

Ψ̃
(2n)
k = π−2µ−2n

(
k − µ

n + k

)
= (−1)n+kπ−2µ−2n (µ − k)n+k

(n + k)!
. (3.38)

When µ = m (integer) these functions vanish if k − m = 0, 1, 2, . . ., which
is more useful that in the earlier choice (3.23). For example, when m = 1

the expansions in (3.37) have just one term (k = 0). In this case Ψ̃
(2n)
0 =

(−1)n/π2n+2 and γ̃0 = γ0, δ̃0 = δ0 (see (3.24)). These approximations
correspond exactly to the first term in the second expansion in (3.6).
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